Functional Data Structures in Monoidal Categories

Zhixuan Yang March. 2025

► Background: clever people have come up with efficient *purely functional* data structures

- ► Background: clever people have come up with efficient *purely functional* data structures
- ► Observation: many of them type check in *linear* languages

- ► Background: clever people have come up with efficient *purely functional* data structures
- ► Observation: many of them type check in *linear* languages
- ► Idea: we can interpret them in suitable *monoidal categories*, such as endofunctors with composition

- ► Background: clever people have come up with efficient *purely functional* data structures
- ► Observation: many of them type check in *linear* languages
- ► Idea: we can interpret them in suitable *monoidal categories*, such as endofunctors with composition
- ▶ Profit: *asymptotically* faster free monads (syntax trees supporting pattern matching and substitution), etc

Live Coding

Let's recap on these data structures [Okasaki 1998]!

	head/tail	cons	snoc	xs + ys
cons lists	O(1)	O(1)	O(n)	O(xs)
snoc lists	O(n)	O(n)	O(1)	O(ys)
queues*	O(1)	O(1)	O(1)	O(ys)
catenable lists*	O(1)	O(1)	O(1)	O(1)

^{*} amortised complexity

(Now go to the accompanying code List.hs, SnocList.hs, Queue.hs, CList.hs).	

Monoidal Languages

A monoidal language $\mathcal{L} := \langle \mathcal{B}, \mathcal{P} \rangle$ is parameterised by

1. a set \mathcal{B} of base types;

Types of \mathscr{L} are generated by

$$\frac{\alpha \in \mathcal{B}}{\vdash \alpha \text{ type}} \qquad \frac{}{\vdash I \text{ type}}$$

$$\frac{\vdash A \text{ type} \qquad \vdash B \text{ type}}{\vdash A \square B \text{ type}}$$

Monoidal Languages

A monoidal language $\mathcal{L} := \langle \mathcal{B}, \mathcal{P} \rangle$ is parameterised by

- 1. a set \mathcal{B} of base types;
- **2**. a family of sets $\mathcal{P}(A, B)$ indexed by pairs of types A and B;

Every element $f \in \mathcal{P}(A, B)$ is called a *primitive operation*.

Monoidal Languages

Contexts are finite lists of variables and types.

Terms under contexts are generated by

$$\frac{f \in \mathcal{P}(A,B) \quad \Gamma \vdash t : A}{x : A \vdash x : A} \qquad \frac{\Gamma_1 \vdash t_1 : A \quad \Gamma_2 \vdash t_2 : B}{\Gamma_1, \Gamma_2 \vdash (t_1,t_2) : A \square B}$$

$$\frac{\Gamma \vdash t_1 : A_1 \square A_2 \qquad \Gamma_l, x_1 : A_1, x_2 : A_2, \Gamma_r \vdash t_2 : B}{\Gamma_l, \Gamma, \Gamma_r \vdash let(x_1, x_2) = t_1 \text{ in } t_2 : B}$$

Example

Given base types {*Egg*, *Oil*, *Rice*} and operations

$$beat \in \mathcal{P}(Egg, Egg), \, fry \in \mathcal{P}(Oil \ \square \ Rice, Rice), \, mix \in \mathcal{P}(Egg \ \square \ Rice, Rice)$$

we have a term:

 $e: Egg, o: Oil, r: Rice \vdash mix (beat e, fry (o, r)) : Rice$

Symmetric Monoidal Languages

Symmetric monoidal languages additionally allow variables in the context to be reordered:

$$\frac{\Gamma_1 \vdash t_1 : A \qquad \Gamma_2 \vdash t_2 : B}{\Gamma_1, \Gamma_2 \vdash (t_1, t_2) : A \square B} \quad \frac{\Gamma_1 \vdash t_1 : A \qquad \Gamma_2 \vdash t_2 : B \qquad \Gamma = \Gamma_1 \uplus \Gamma_2}{\Gamma \vdash (t_1, t_2) : A \square B}$$

and similarly for all rules.

Right linear function types

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A \cdot t : B/A}$$

$$\frac{\Gamma_1 \vdash t_1 : B/A \qquad \Gamma_2 \vdash t_2 : A}{\Gamma_1, \Gamma_2 \vdash t_1 \ t_2 : B}$$

Cartesian product types

$$\frac{\Gamma \vdash t_1 : A_1 \qquad \Gamma \vdash t_2 : A_2}{\Gamma \vdash \langle t_1, t_2 \rangle : A_1 \times A_2}$$

$$\frac{\Gamma \vdash t_1 : A_1 \times A_2 \qquad \Gamma_l, x : A_i, \Gamma_r \vdash t_2 : B}{\Gamma_l, \Gamma, \Gamma_r \vdash t_2[\pi_i \ t_1/x] : B} \ i \in \{1, 2\}$$

*not needed in this talk

Coproduct types

$$\frac{\Gamma \vdash t : A_i}{\Gamma \vdash \iota_i \; t : A_1 + A_2} \; i \in \{1, 2\}$$

$$\frac{\Gamma \vdash t : A_1 + A_2 \qquad x_i : A_i \vdash t_i : C, i \in \{1, 2\}}{\Gamma \vdash case \ t \ of \ \{\iota_1 \ x_i \mapsto t_1; \ \iota_2 \ x_2 \mapsto t_2\} : C}$$

Inductive types

$$\frac{\Theta, \alpha \vdash T \text{ type} \qquad \alpha \text{ occurs strictly positively in } T}{\Theta \vdash \mu \alpha. T \text{ type}}$$

$$\frac{\Gamma \vdash t : T[\mu\alpha. T/\alpha]}{\Gamma \vdash cons \ t : \mu\alpha. T} \qquad \frac{\Gamma \vdash i : \mu\alpha. T \qquad x : T[A/\alpha] \vdash a : A}{\Gamma \vdash fold \ a \ i : A}$$

and similarly for inductive *nested* types (such as *CList*).

Observation

The clever implementations of lists can be implemented in the monoidal language (with functions, inductive types, and coproducts).

E.g., for every type A, define $LA := \mu X$. $I + A \square X$. Concatenation is like

$$\frac{a := (x : I + A \square (L A)/(L A) \vdash \cdots : (L A)/(L A))}{i : L A \vdash fold \ a \ i : (L A)/(L A)}$$

Recap

A category & consists of

- 1. (objects) a set Obj \mathscr{C} ,
- 2. (*morphisms*) a family of sets $\mathcal{C}(A, B)$ for every $A, B \in \text{Овј } \mathcal{C}$,
- 3. (identity) an element $id_A \in \mathcal{C}(A, A)$ for every $A \in \text{Овј }\mathcal{C}$,
- 4. (*composition*) an element $g \cdot f \in \mathcal{C}(A, C)$ for every $f \in \mathcal{C}(A, B), g \in \mathcal{C}(B, C)$,

subject to

Recap

A *functor* $F : \mathscr{C} \to \mathscr{D}$ consists of

- 1. (*object mapping*) a function $F_0: \mathscr{C} \to \mathscr{D}$,
- 2. (morphism mapping) a family of functions for all $A, B \in O$ вј C

$$F_1: \mathscr{C}(A,B) \to \mathscr{D}(F_0A,F_0B),$$

such that F_1 preserves identities and composition.

Recap

Let $F, G : \mathscr{C} \to \mathscr{D}$. A natural transformation $\alpha : F \to G$ is a family of morphisms $\alpha_A \in \mathscr{D}(FA, GA)$, for all $A \in \mathscr{C}$, such that

$$\begin{array}{ccc}
FA & \xrightarrow{Ff} & FB \\
 \alpha_A \downarrow & & \downarrow \alpha_B \\
GA & \xrightarrow{Gf} & GB
\end{array}$$

commutes for all $A, B \in \mathcal{C}, f \in \mathcal{C}(A, B)$.

Functors and nat. transformations form a category $\mathcal{D}^{\mathscr{C}}$.

Strict Monoidal Categories

A *strict monoidal category* $\langle \mathcal{C}, \square, I \rangle$ is a category \mathcal{C} and a functor

$$\square:\mathscr{C}\to\mathscr{C}^\mathscr{C}$$
 (i.e. $\mathscr{C}\times\mathscr{C}\to\mathscr{C}$) and an object $I\in\mathscr{C}$ such that

- $ightharpoonup I \square A = A = A \square I$,
- $\blacktriangleright (A \square B) \square C = A \square (B \square C)$

for all $A, B, C \in \text{Obj } \mathcal{C}$, and similarly for morphisms:

- $\blacktriangleright (f \square g) \square h = f \square (g \square h).$

Strict Monoidal Categories

A *strict monoidal category* $\langle \mathcal{C}, \square, I \rangle$ is a category \mathcal{C} and a functor $\square : \mathcal{C} \to \mathcal{C}^{\mathcal{C}}$ (i.e. $\mathcal{C} \times \mathcal{C} \to \mathcal{C}$) and an object $I \in \mathcal{C}$ such that ...

For every \mathscr{C} , $\langle \mathscr{C}^{\mathscr{C}}, \circ, \operatorname{Id} \rangle$ is a strict monoidal category, where $\circ : \mathscr{C}^{\mathscr{C}} \times \mathscr{C}^{\mathscr{C}} \to \mathscr{C}^{\mathscr{C}}$ is functor composition, and $\operatorname{Id} \in \mathscr{C}^{\mathscr{C}}$ is the identity functor.

Interpretation

An *interpretation* of $\mathcal{L} = \langle \mathcal{B}, \mathcal{P} \rangle$ in a monoidal category \mathcal{E} is

1. an assignment of \mathscr{E} -objects $[\![\alpha]\!]$ to each base type $\alpha \in \mathscr{B}$, which induces the interpretation of all types and contexts:

2. ...

Interpretation

An *interpretation* of $\mathcal{L} = \langle \mathcal{B}, \mathcal{P} \rangle$ in a monoidal category \mathcal{E} is

- 1. an assignment of \mathscr{E} -objects $[\![\alpha]\!]$ to each base type $\alpha \in \mathscr{B}$,
- 2. an assignment of \mathscr{E} -morphisms $\llbracket f \rrbracket : \llbracket A \rrbracket \to \llbracket B \rrbracket$ to each primitive operation $f \in \mathscr{P}(A,B)$, which determines the interpretation of all terms:

Interpretation

To interpret the optional type formers

$$B/A$$
 $A \times B$ $A + B$

$$A + B$$

 $\mu\alpha$. T

the monoidal category \mathscr{E} needs to satisfy some properties.

Under some condition on \mathscr{C} , the monoidal category $\langle \mathscr{C}^{\mathscr{C}}, \circ, \operatorname{Id} \rangle$ does have these type formers.

Data Structure in Monoidal Categories

The clever functional data structures can be interpreted in the monoidal category $\langle \mathscr{C}^{\mathscr{C}}, \circ, \operatorname{Id} \rangle$.

For now, let's do the interpretation manually.

(Now go to the accompanying code FastFree.hs and	
LamPHOAS.hs).	

Next Steps

- ► Prove the complexity of *CListF* rigorously, or even mechanically using CALF?
- ► Compare the complexity of substitution-based λ -normaliser using *CListF* with *normalising by evaluation*
- ► Explore other algorithms and data structures
- ► Make the translation automatic. Bernardy and Spiwack's LINEAR-SMC looks promising

Thank You

Find structural similarity between simple and complex things, so complex things become simple.

(old Chinese proverb, circa 2025)