
Functional Data Structures
in Monoidal Categories

Zhixuan Yang

March, 2025

Outline

I Background: clever people have come up with efficient
purely functional data structures

I Observation: many of them type check in linear languages
I Idea: we can interpret them in suitable monoidal categories,

such as endofunctors with composition
I Profit: asymptotically faster free monads (syntax trees

supporting pattern matching and substitution), etc

Outline

I Background: clever people have come up with efficient
purely functional data structures

I Observation: many of them type check in linear languages

I Idea: we can interpret them in suitable monoidal categories,
such as endofunctors with composition

I Profit: asymptotically faster free monads (syntax trees
supporting pattern matching and substitution), etc

Outline

I Background: clever people have come up with efficient
purely functional data structures

I Observation: many of them type check in linear languages
I Idea: we can interpret them in suitable monoidal categories,

such as endofunctors with composition

I Profit: asymptotically faster free monads (syntax trees
supporting pattern matching and substitution), etc

Outline

I Background: clever people have come up with efficient
purely functional data structures

I Observation: many of them type check in linear languages
I Idea: we can interpret them in suitable monoidal categories,

such as endofunctors with composition
I Profit: asymptotically faster free monads (syntax trees

supporting pattern matching and substitution), etc

Live Coding

Let’s recap on these data structures [Okasaki 1998]!

head/tail cons snoc xs ++ ys
cons lists O(1) O(1) O(n) O(|xs|)
snoc lists O(n) O(n) O(1) O(|ys|)
queues∗ O(1) O(1) O(1) O(|ys|)

catenable lists∗ O(1) O(1) O(1) O(1)
∗ amortised complexity

(Now go to the accompanying code List.hs, SnocList.hs,
Queue.hs, CList.hs).

Monoidal Languages

A monoidal language ℒ := 〈ℬ,�〉 is parameterised by
1. a set ℬ of base types;

Types of ℒ are generated by

 ∈ ℬ

`
 type ` I type

` A type ` B type

` A � B type

Monoidal Languages

A monoidal language ℒ := 〈ℬ,�〉 is parameterised by
1. a set ℬ of base types;
2. a family of sets �(A, B) indexed by pairs of types A and B;

Every element f ∈ �(A, B) is called a primitive operation.

Monoidal Languages

Contexts are finite lists of variables and types.

Terms under contexts are generated by

x : A ` x : A

f ∈ �(A, B) Γ ` t : A

Γ ` f t : B

Γ1 ` t1 : A Γ2 ` t2 : B

Γ1, Γ2 ` (t1, t2) : A � B

Γ ` t1 : A1 � A2 Γl, x1 : A1, x2 : A2, Γr ` t2 : B

Γl, Γ, Γr ` let (x1, x2) = t1 in t2 : B
· · ·

Example

Given base types {Egg,Oil,Rice} and operations

beat ∈ �(Egg, Egg), fry ∈ �(Oil � Rice,Rice), mix ∈ �(Egg � Rice,Rice)

we have a term:

e : Egg, o : Oil, r : Rice ` mix (beat e, fry (o, r)) : Rice

Symmetric Monoidal Languages

Symmetric monoidal languages additionally allow variables in the
context to be reordered:

Γ1 ` t1 : A Γ2 ` t2 : B

Γ1, Γ2 ` (t1, t2) : A � B

Γ1 ` t1 : A Γ2 ` t2 : B Γ = Γ1] Γ2

Γ ` (t1, t2) : A � B

and similarly for all rules.

Optional Type Formers

Right linear function types

Γ, x : A ` t : B

Γ ` �x : A. t : B/A

Γ1 ` t1 : B/A Γ2 ` t2 : A

Γ1, Γ2 ` t1 t2 : B

Optional Type Formers

Cartesian product types

Γ ` t1 : A1 Γ ` t2 : A2

Γ ` 〈t1, t2〉 : A1 × A2

Γ ` t1 : A1 × A2 Γl, x : Ai, Γr ` t2 : B

Γl, Γ, Γr ` t2[�i t1/x] : B
i ∈ {1, 2}

*not needed in this talk

Optional Type Formers

Coproduct types

Γ ` t : Ai

Γ ` �i t : A1 + A2
i ∈ {1, 2}

Γ ` t : A1 + A2 xi : Ai ` ti : C, i ∈ {1, 2}
Γ ` case t of {�1 xi ↦→ t1; �2 x2 ↦→ t2} : C

Optional Type Formers

Inductive types

Θ,
 ` T type
 occurs strictly positively in T

Θ ` �
. T type

Γ ` t : T[�
. T/
]
Γ ` cons t : �
. T

Γ ` i : �
. T x : T[A/
] ` a : A

Γ ` fold a i : A

and similarly for inductive nested types (such as CList).

Observation

The clever implementations of lists can be implemented in the
monoidal language (with functions, inductive types, and
coproducts).

E.g., for every type A, define L A := �X. I + A � X. Concatenation is like

a :=
(
x : I + A � (L A)/(L A) ` · · · : (L A)/(L A)

)
i : L A ` fold a i : (L A)/(L A)

Recap

A category � consists of
1. (objects) a set Obj�,
2. (morphisms) a family of sets �(A, B) for every A, B ∈ Obj�,
3. (identity) an element idA ∈ �(A,A) for every A ∈ Obj�,
4. (composition) an element g · f ∈ �(A,C) for every

f ∈ �(A, B), g ∈ �(B,C),
subject to ….

Recap

A functor F : � → � consists of
1. (object mapping) a function F0 : � → �,
2. (morphism mapping) a family of functions for all A, B ∈ Obj C

F1 : �(A, B) → �(F0A, F0B),

such that F1 preserves identities and composition.

Recap

Let F,G : � → �. A natural transformation
 : F → G is a family
of morphisms
A ∈ �(FA,GA), for all A ∈ �, such that

FA FB

GA GB

Ff

A
B

Gf

commutes for all A, B ∈ �, f ∈ �(A, B).
Functors and nat. transformations form a category �

�.

Strict Monoidal Categories

A strict monoidal category 〈�,�, I〉 is a category � and a functor
� : � → �

� (i.e. � ×� → �) and an object I ∈ � such that
I I � A = A = A � I,
I (A � B) � C = A � (B � C)

for all A, B,C ∈ Obj�, and similarly for morphisms:
I idA � f = f = f � idA,
I (f � g) � h = f � (g � h).

Strict Monoidal Categories

A strict monoidal category 〈�,�, I〉 is a category � and a functor
� : � → �

� (i.e. � ×� → �) and an object I ∈ � such that
…

For every �, 〈�� , ◦, Id〉 is a strict monoidal category, where
◦ : �� ×�

� → �
� is functor composition, and Id ∈ �

� is the
identity functor.

Interpretation

An interpretation of ℒ = 〈ℬ,�〉 in a monoidal categoryℰ is
1. an assignment ofℰ-objects ~
� to each base type
 ∈ ℬ,

which induces the interpretation of all types and contexts:

~I� = Iℰ ~A � B� = ~A� �ℰ ~B�
~·� = Iℰ ~Γ, x : A� = ~Γ� �ℰ ~A�

2. …

Interpretation

An interpretation of ℒ = 〈ℬ,�〉 in a monoidal categoryℰ is
1. an assignment ofℰ-objects ~
� to each base type
 ∈ ℬ,
2. an assignment ofℰ-morphisms ~f � : ~A�→ ~B� to each

primitive operation f ∈ �(A, B), which determines the
interpretation of all terms:

~x� = id ~f t� = ~f � · ~t� ~(t1, t2)� = ~t1� �ℰ ~t2�

~let (x1, x2) = t1 in t2� = ~t2� · (~Γl� �ℰ ~t1� �ℰ ~Γr�)

Interpretation

To interpret the optional type formers

B/A A × B A + B �
. T

the monoidal categoryℰ needs to satisfy some properties.

Under some condition on �, the monoidal category 〈�� , ◦, Id〉
does have these type formers.

Data Structure in Monoidal Categories

The clever functional data structures can be interpreted in the
monoidal category 〈�� , ◦, Id〉.

For now, let’s do the interpretation manually.

(Now go to the accompanying code FastFree.hs and
LamPHOAS.hs).

Next Steps

I Prove the complexity of CListF rigorously, or even
mechanically using calf?

I Compare the complexity of substitution-based
�-normaliser using CListF with normalising by evaluation

I Explore other algorithms and data structures
I Make the translation automatic. Bernardy and Spiwack’s

linear-smc looks promising

Thank You

Find structural similarity between simple and complex
things, so complex things become simple.

(old Chinese proverb, circa 2025)

