Active Automata Learning Formal Methods for Efficient Model Inference

28/11/2024

Testing?

Verification?

Understanding?

Testing?

Verification?

Understanding?

Use Automata to
Represent the System
(Explainable and Readable)

Motivation of Black-Box Automata Learning - Example

A high-level overview

. . .

	ε
ε	Ø
©	
0	5
*	Ø
@ @	Ø
0 40	Ø
0 4 4	5

	ε
ε	Ø
©	
0	*
*	Ø
© ©	Ø
040	Ø

Back to Basics: DFA

A deterministic finite automaton M is a tuple $(Q, q_0, \Sigma, \delta, F)$, where:

- Q is a finite set of states
- $q_0 \in Q$ is an initial state
- Σ is an alphabet
- $\delta: Q \times \Sigma \to Q$ is a transition function
- $F \subseteq Q$ is a set of final/accepting states

Back to Basics: DFA

A deterministic finite automaton M is a tuple $(Q, q_0, \Sigma, \delta, F)$, where:

- Q is a finite set of states
- $q_0 \in Q$ is an initial state
- Σ is an alphabet
- $\delta: Q \times \Sigma \to Q$ is a transition function
- $F \subseteq Q$ is a set of final/accepting states

Back to Basics: DFA

A deterministic finite automaton M is a tuple $(Q, q_0, \Sigma, \delta, F)$, where:

- Q is a finite set of states
- $q_0 \in Q$ is an initial state
- Σ is an alphabet
- $\delta: Q \times \Sigma \to Q$ is a transition function
- $F \subseteq Q$ is a set of final/accepting states

* missing transitions lead to sink state

Hypothesis

Equivalence Query

Equivalence Query

Equivalence Query

MAT: Observation Table

An observation table is a tuple (S, E, T), where:

- S, E are non-empty finite sets of strings
- T is a mapping $((S \cup S \cdot \Sigma) \cdot E) \to \{\top, \bot\}$

The table structure can be represented visually as:

	E
S	
$S \cdot \Sigma$	

MAT: Observation Table

An observation table is a tuple (S, E, T), where:

- S, E are non-empty finite sets of strings
- T is a mapping $((S \cup S \cdot \Sigma) \cdot E) \to \{\top, \bot\}$

The table structure can be represented visually as:

	$oxed{E}$
S	
$S \cdot \Sigma$	

Example. $\Sigma = \{a, b\}$

MAT: Observation Table

An observation table is a tuple (S, E, T), where:

- S, E are non-empty finite sets of strings
- T is a mapping $((S \cup S \cdot \Sigma) \cdot E) \to \{\top, \bot\}$

The table structure can be represented visually as:

	$oxed{E}$
S	
$S\cdot \Sigma$	

$$row(\varepsilon) = 1 \ 0$$

 $row(b) = 0 \ 0$
 $row(\varepsilon) = row(bbb)$

ε	b
1	0
0	0
0	1
1	0
1	0
0	0
0	1
1	0
0	0
	1 0 0 1 1 0 0

Example. $\Sigma = \{a, b\}$

MAT: Table to Hypothesis

When an observation table is closed and consistent, we can define a minimal DFA where:

$$Q = \{row(s) : s \in S\}$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$

$$q_0 = row(\varepsilon)$$

$$\delta(row(s), a) = row(s \cdot a)$$

MAT: Table to Hypothesis

When an observation table is closed and consistent, we can define a minimal DFA where:

$$Q = \{row(s) : s \in S\}$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$

$$q_0 = row(\varepsilon)$$

$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
ε	1	0
\mathbf{a}	0	1
aa	1	1
aaa	1	0
aaaa	0	1

MAT: Table to Hypothesis

When an observation table is closed and consistent, we can define a minimal DFA where:

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
ε	1	0
\mathbf{a}	0	1
aa	1	1
aaa	1	0
aaaa	0	1

$$Q = \{row(s) : s \in S\}$$

 $q_0 = row(\varepsilon)$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

	ε	\mathbf{a}	
arepsilon	1	0	
\mathbf{a}	0	1	
aa	1	1	
aaa	1	0	
aaaa	0	1	

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$

$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
arepsilon	1	0
a	0	1
aa	1	1
aaa	1	0
aaaa	0	1

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
ε	1	0
\mathbf{a}	0	1
aa	1	1
aaa	1	0
aaaa	0	1

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$

$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
ε	1	0
\mathbf{a}	0	1
aa	1	1
aaa	1	0
aaaa	0	1

$$\mathsf{start} \to \hspace{-1.5cm} \begin{array}{|c|c|}\hline \epsilon \end{array}$$

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
ε	1	0
a	0	1
aa	1	1
aaa	1	0
aaaa	0	1

$$\mathsf{start} \to \hspace{-1.5cm} \left(\hspace{0.5cm} \epsilon \hspace{0.5cm} \right)$$

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a	
ε	1	0	
\mathbf{a}	0	1	
aa	1	1	
aaa	1	0	
aaaa	0	1	

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

$$Q = \{row(s) : s \in S\}$$
$$q_0 = row(\varepsilon)$$

$$F = \{row(s) : s \in S \land T(s) = 1\}$$
$$\delta(row(s), a) = row(s \cdot a)$$

	ε	a
ε	1	0
\mathbf{a}	0	1
aa	1	1
aaa	1	0
aaaa	0	1

An observation table is *closed* when $\forall s_1 \in S \cdot \Sigma : \exists s_2 \in S : row(s_1) = row(s_2)$.

An observation table is *closed* when $\forall s_1 \in S \cdot \Sigma : \exists s_2 \in S : row(s_1) = row(s_2)$.

	ε	a
ε	1	1
b	0	1
a	1	1
ba	0	1
bb	0	0

An observation table is *closed* when $\forall s_1 \in S \cdot \Sigma : \exists s_2 \in S : row(s_1) = row(s_2)$.

	ε	a
ε	1	1
b	0	1
a	1	1
ba	0	1
bb	0	0

An observation table is *closed* when $\forall s_1 \in S \cdot \Sigma : \exists s_2 \in S : row(s_1) = row(s_2)$.

The rows in $S \cdot \Sigma$ not in S are added to S and the table is extended.

	ε	\mathbf{a}
ε	1	1
b	0	1
a	1	1
ba	0	1
bb	0	0

An observation table is *closed* when $\forall s_1 \in S \cdot \Sigma : \exists s_2 \in S : row(s_1) = row(s_2)$.

The rows in $S \cdot \Sigma$ not in S are added to S and the table is extended.

	ε	\mathbf{a}	ε	
Ξ	1	1	 b	(
b	0	1	bb	0
\mathbf{a}	1	1	a	1
a	0	1	ba	0
bb	0	0	bba	1
			bbb	(
			I.	1

An observation table is *closed* when $\forall s_1 \in S \cdot \Sigma : \exists s_2 \in S : row(s_1) = row(s_2)$.

The rows in $S \cdot \Sigma$ not in S are added to S and the table is extended.

					ε	
	ε	a		ε	1	Г
arepsilon	1	1	→	b	0	
b	0	1		bb	0	
\mathbf{a}	1	1		a	1	
ba	0	1		ba	0	
bb	0	0		bba	1	
,	1			bbb	0	

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	a
ε	1	1
a	1	1
b	1	0
ba	0	0
aa	1	0
ab	1	0
bb	0	0
•••		

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	\mathbf{a}
arepsilon	1	1
\mathbf{a}	1	1
b	1	0
ba	0	0
aa	1	0
ab	1	0
bb	0	0

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	\mathbf{a}
arepsilon	1	1
a	1	1
b	1	0
ba	0	0
aa	1	0
ab	1	0
bb	0	0
•••		

An observation table is *consistent* when:

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	a
ε	1	1
\mathbf{a}	1	1
b	1	0
ba	0	0
aa	1	0
ab	1	0
bb	0	0

An observation table is *consistent* when:

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	a
ε	1	1
\mathbf{a}	1	1
b	1	0
ba	0	0
aa	1	0
ab	1	0
bb	0	0

An observation table is *consistent* when:

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	\mathbf{a}	
ε	1	1	
\mathbf{a}	1	1	
b	1	0	
ba	0	0	
aa	1	0	
ab	1	0	
bb	0	0	

	ε	a	aa
ε	1	1	1
\mathbf{a}	1	1	0
b	1	0	0
ba	0	0	0
aa	1	0	1
ab	1	0	0
bb	0	0	0

An observation table is *consistent* when:

$$\forall s_1, s_2 \in S, a \in \Sigma : row(s_1) = row(s_2) \rightarrow row(s_1 \cdot a) = row(s_2 \cdot a).$$

	ε	a
ε	1	1
\mathbf{a}	1	1
b	1	0
ba	0	0
aa	1	0
ab	1	0
bb	0	0

	ε	a	aa
ε	1	1	1
\mathbf{a}	1	1	0
b	1	0	0
ba	0	0	0
aa	1	0	1
ab	1	0	0
bb	0	0	0

Now a learning example!

ε
1
1
0

Initial table

DFA that accepts strings with a number of b multiple of 3

Initial table

Closed (and consistent)

DFA that accepts strings with a number of b multiple of 3

Initial table

Closed (and consistent)

 $\begin{array}{c}
 & \text{start} \longrightarrow \mathcal{E} \\
 & \text{b} \\
 & \text{bbb}
\end{array}$

Add counterexample (and all its prefixes) to S

	2
	ε
ε	1
b	0
bb	0
bbb	1
a	1
ba	0
bba	0
bbba	1
bbbb	0

Extended with cex

ε
1
0
0
1
1
_
0
-
0

Extended with cex

	ε
ε	1
b	0
bb	0
bbb	1
a	1
ba	0
bba	0
bbba	1
bbbb	0

	ε	b
ε	1	0
b	0	0
bb	0	1
bbb	1	0
a	1	0
ba	0	0
bba	0	1
bbba	1	0
bbbb	0	0

DFA that accepts strings with a number of b multiple of 3

Extended with cex

Consistent

	ε
ε	1
b	0
bb	0
bbb	1
a	1
ba	0
bba	0
bbba	1
bbbb	0

	ε	b
ε	1	0
b	0	0
bb	0	1
bbb	1	0
a	1	0
ba	0	0
bba	0	1
bbba	1	0
bbbb	0	0

DFA that accepts strings with a number of b multiple of 3

Final hypothesis

Extended with cex

Consistent

	2 31
	ε
ε	1
b	0
bb	0
bbb	1
a	1
ba	0
bba	0
bbba	1
bbbb	0

	ε	b
ε	1	0
b	0	0
bb	0	1
bbb	1	0
a	1	0
ba	0	0
bba	0	1
bbba	1	0
bbbb	0	0

DFA that accepts strings with a number of b multiple of 3

Extended with \cos

Consistent

Correct if teacher responds correctly

- Correct if teacher responds correctly
- S contains only distinguishing states (less or equal to minimal system)

- Correct if teacher responds correctly
- S contains only distinguishing states (less or equal to minimal system)
- For every cex, at least one state added to S (loop variant)

- Correct if teacher responds correctly
- S contains only distinguishing states (less or equal to minimal system)
- For every cex, at least one state added to S (loop variant)

MAT: Alternative to Observation Table

Classification/Discrimination Tree

- Correct if teacher responds correctly
- S contains only distinguishing states (less or equal to minimal system)
- For every cex, at least one state added to S (loop variant)

MAT: Alternative to Observation Table

Classification/Discrimination Tree

Great! Now some issues...

Problems with MAT In Real-World Environments

Equivalence query?

Teacher vs. System?

Problems with MAT In Real-World Environments

Equivalence query?

Teacher vs. System?

Environment Noise?

Evolving System?

Problems with MAT In Real-World Environments

Equivalence query?

Teacher vs. System?

Environment Noise?

Evolving System?

A *conflict* appears when a query's answer formally contradicts a previous query in a way that cannot be expressed by a model of the target class.

Ex.: two different answers for the same query

State of the art: cannot survive conflicts

A *conflict* appears when a query's answer formally contradicts a previous query in a way that cannot be expressed by a model of the target class.

Ex.: two different answers for the same query

State of the art: cannot survive conflicts

In practice: repeating queries so that no conflict reaches the learner

Exponential growth...

Of the number of repeats based on the probability of a conflict reaching the learner Linear increase of noise leads to an exponential increase of the number of repeats

A *conflict* appears when a query's answer formally contradicts a previous query in a way that cannot be expressed by a model of the target class.

Ex.: two different answers for the same query

State of the art: cannot survive conflicts

In practice: repeating queries so that no conflict reaches the learner

Exponential growth...

Of the number of repeats based on the probability of a conflict reaching the learner Linear increase of noise leads to an exponential increase of the number of repeats

If only we could allow a few conflicts...

Learner

Learner

Teacher

Learner

System

Learner

Reviser

System

Compatible with state-of-the-art MAT Learners!

Practical Considerations

Reviser Strategy? (conflict management)

Most Recent vs. Most Frequent Answer

Practical Considerations

Reviser Strategy? (conflict management)

Most Recent vs. Most Frequent Answer

Efficiency of Prune?

No system tests during re-learning, information storage ≠ learning

- C3AL more reliable for higher levels of noise and bigger target systems
 - 96% success compared to 80% for MAT
 - noise between 0% and 0.1%
 - between 4 and 66 states
 - alphabet sizes between 7 and 22 input symbols

- C3AL more reliable for higher levels of noise and bigger target systems
 - 96% success compared to 80% for MAT
 - noise between 0% and 0.1%
 - between 4 and 66 states
 - alphabet sizes between 7 and 22 input symbols
- C3AL provides the most efficient correct model in 70% of the experiments
 - C3AL has on average a 6% reduction in the number of system tests

- C3AL more reliable for higher levels of noise and bigger target systems
 - 96% success compared to 80% for MAT
 - noise between 0% and 0.1%
 - between 4 and 66 states
 - alphabet sizes between 7 and 22 input symbols
- C3AL provides the most efficient correct model in 70% of the experiments
 - C3AL has on average a 6% reduction in the number of system tests
- We're now able to learn large systems that are noisy/evolving!

Tools

The following projects are listed in alphabetical order.

• C3AL (Conflict-Aware Active Automata Learning, link) is an alternative to the MAT framework that treats conflicts (e.g., in noisy environments) as first-class citizens. It is implemented on top of LearnLib and extends previous work on adaptive model learning.

Resources

- Frits Vaandrager. 2017. "Model learning". https://doi.org/10.1145/2967606
- Dana Angluin. 1987. "Learning regular sets from queries and counterexamples".
 https://doi.org/10.1016/0890-5401(87)90052-6
- Michael J. Kearns, Umesh Vazirani. 1994. "Learning Finite Automata by Experimentation" in An Introduction to Computational Learning Theory, MIT Press, pp.155-187.
- M. Isberner , F. Howar, B. Steffen. 2014. "The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning". In: Bonakdarpour, B., Smolka, S.A. (eds) Runtime Verification. RV 2014. Lecture Notes in Computer Science, vol 8734. Springer, Cham. https://doi.org/10.1007/978-3-319-11164-3_26
- Tiago Ferreira, Harrison Brewton, Loris D'Antoni, and Alexandra Silva. 2021. "Prognosis: closed-box analysis of network protocol implementations". In SIGCOMM '21. https://doi.org/10.1145/3452296.3472938
- Tiago Ferreira, Léo Henry, Raquel Fernandes da Silva, Alexandra Silva. 2023. "Conflict-Aware Active Automata Learning". https://doi.org/10.48550/arXiv.2308.14781

Thank you!