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Overview

In this talk, I am going to give a high-level but yet extensive introduction to Hazel,
    a separation logic for effect handlers.

Part 1. Programming
  Introduction to effect handlers
● Live Programming

    Shallow vs deep handlers
    Simple examples
    Advanced example: invert

● Formal Semantics

Part 2. Logic
  Introduction to Hazel

● Specification Language
● Reasoning Rules
● Case Study

    Verification of invert



Part 1. Introduction to Effect Handlers



exception Division_by_zero
let ( / ) x y =
 if y = 0 then raise Division_by_zero
 else Int.div x y
let _ =
  match 1 + (1 / 0) with
  | exception Division_by_zero -> 0
  | y -> y

-: int = 0

type _ Effect.t += Division_by_zero: int t
let ( / ) x y =
 if y = 0 then perform Division_by_zero
 else Int.div x y
let _ =
  match 1 + (1 / 0) with
  | effect Division_by_zero k ->
     continue k 0
  | y -> y

Effect handlers generalize exception handlers:
      whereas raising an exception discards the computation,
      performing an effect suspends the computation, which is reified as a continuation.

Effect Handlers

-: int = 1



type _ Effect.t += E : unit t
let f () = perform E

let _ =
  shallow%match f(); f() with
  | effect E k -> continue k ()
  | y -> y

type _ Effect.t += E : unit t
let f () = perform E

let _ =
  match f(); f() with
  | effect E k -> continue k ()
  | y -> y

Effect handlers come in two flavors:
● shallow handlers, which handle the first effect; and
● deep handlers, which handle all the effects.

Shallow VS Deep

Exception: Unhandled -: int = ()



Demo!



Part 2. Introduction to Hazel



Specification Language



Hazel is an extension of Iris.

The Rocq Prover

Hazel

Iris

OCaml 5 
(subset)

Formalization of the operational semantics of a subset of
    OCaml 5 containing
    (1) dynamically allocated mutable state,
    (2) effect handlers (both shallow and deep),
    (3) global effect names (encoded using binary sums), and
    (4) one-shot continuations.

Iris is a modern Separation Logic:
    standard logical connectives (∀, ∃, ⇒, ⋀, ∨),
    separating conjunction (*),
    magic wand (        ),
    later modality (▷,for guarded recursion),
    persistently modality (□, to describe duplicable resources),
    update modality (    , to support ghost state,
        a verification technique used to verify invert).

⇒

Overview of the Rocq mechanization



In traditional Separation Logic,
    a specification includes a precondition P and a postcondition Q:

P    wp e {y.Q}

The key idea of Hazel is to generalize specifications with a protocol Ψ,
    a description of the effects that a program might perform.

P    ewp e〈Ψ 〉{y.Q}

"If the precondition P holds, then e can be safely executed.
    This program either
      (1) diverges, or
      (2) terminates in a state where the postcondition Q holds, or
      (3) performs an effect according to the protocol Ψ."

Protocols



Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

● Protocol sum  Ψ1 + Ψ2

● Empty protocol  ⊥ 

Syntax of Protocols



ewp (ref 0)〈⊥〉{r. r ↦ 0}

ewp (let r = ref 1 in !r + !r)〈⊥〉{y. y = 2}

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

● Empty protocol  ⊥

    describes the absence of effects. 

Examples.

Syntax of Protocols



● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

    attaches a precondition P and a postcondition Q to performing an effect,

    suggesting to think of performing an effect as calling a function.

"A program  is allowed to perform the effect  u  if there exists  x  such that  u = v  and  P  holds.
    For any  y  , the computation can be resumed with return value  w  , provided that  Q  holds."

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

Syntax of Protocols



effect Abort : unit -> 'a

● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

Examples.

True    ewp (perform (Abort ()))〈ABORT〉{_. False}

ABORT = !_ (Abort ()) {True}. ?y (y) {False}

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

Syntax of Protocols



● Send/recv protocol  !x (v) {P}. ?y (w) {Q}

Examples.

GET = !x (Get ()) {currSt x}. ?_ (x) {currSt x}

currSt 1  
  ewp (let x = perform (Get ()) in x + x)〈GET〉
                                          {y. y = 2 * currSt 1}

effect Get : unit -> int

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

Syntax of Protocols



● Protocol sum  Ψ1 + Ψ2

    describes effects that abide by either Ψ1 or Ψ2.

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

Syntax of Protocols



● Protocol sum  Ψ1 + Ψ2

currSt 0  
  ewp (let _ = perform (Set  1) in
       let x = perform (Get ()) in x + x)〈GET + SET〉
                                          {y. y = 2 * currSt 1}

GET = !x   (Get ()) {currSt x}. ?_ ( x) {currSt x}
SET = !x y (Set  y) {currSt x}. ?_ (()) {currSt y}

Examples.

Ψ ::= ⊥ | !x (v) {P}. ?y (w) {Q} | Ψ + Ψ

Syntax of Protocols



Reasoning Rules



ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈⊥〉{Q}

False

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Empty)

(Sum)

∃x. u = v * P * (∀y. Q    R(w))

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

Reasoning About Effects



ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈⊥〉{Q}

False

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Empty)

(Sum)

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

∃x. u = v * P * (∀y. Q    R(w))

Reasoning About Effects



ewp (perform u)〈⊥〉{Q}

False

(Empty)

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Sum)

∃x. u = v * P * (∀y. Q    R(w))

Reasoning About Effects



ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Sum)

ewp (perform u)〈⊥〉{Q}

(Empty)

False

∃x. u = v * P * (∀y. Q    R(w))

Reasoning About Effects



∃x. u = v * P * (∀y. Q    R(w))

ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

(Sum)

ewp (perform u)〈⊥〉{Q}

(Empty)

False

"... is allowed to perform … u
if there exists  x  such that  u = v
and [the precondition]  P  holds …"

Reasoning About Effects



ewp (perform u)〈!x (v) {P}. ?y (w) {Q}〉{R}

(Send/recv)

(Sum)

ewp (perform u)〈⊥〉{Q}

(Empty)

False

∃x. u = v * P * (∀y. Q    R(w))

"... for any  y , the computation
can be resumed with…  w , provided
that [the postcondition]  Q  holds."

ewp (perform u)〈Ψ1〉{Q} ⋁
ewp (perform u)〈Ψ2〉{Q}

ewp (perform u)〈Ψ1 + Ψ2〉{Q}

Reasoning About Effects



(Frame Rule)

P    ewp e〈Ψ〉{Q}

(P * R)    ewp e〈Ψ〉{y. Q(y) * R}

This is a crucial rule from Separation Logic.

It allows programs to be studied separately
    if they do not alter the same data structures.

Hazel preserves the frame rule
    thanks to the restriction to one-shot continuations.

Local Reasoning: State



(Bind Rule)

ewp e〈Ψ〉{y. ewp N[y]〈Ψ〉{Q}}

ewp N[e]〈Ψ〉{Q}

N is a neutral context

A neutral context contains no handlers.

This rule allows a program to be studied in isolation
    from the context under which it is evaluated.

Local Reasoning: Context



(Shallow Handler)

ewp e〈Ψ1〉{Q1}

ewp (shallow%match e with effect v k -> h v k | y -> r y)〈Ψ2〉{Q2}

isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2}

This rule allows the handlee e to be studied in isolation
    from the handler that monitors its execution.

Intuitively, the protocol Ψ1 is an abstraction boundary between handlee and handler:
    performing effects is akin to sending requests to a server,
    whose interface Ψ1 the handler must implement.

Reasoning About Handlers



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

(∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

(Return branch)

(Effect branch)

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:

Reasoning About Handlers



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

 ∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2} 

(∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

The return branch can assume that y
    satisfies the handlee's postcondition Q1.

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:

Reasoning About Handlers



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

 ∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2}

 ⋀ 

The effect branch can assume that  v
    was performed under a context k
    according to the protocol Ψ1.

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:

Reasoning About Handlers



isShallowHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

 ∀v k.

   ewp (perform v)〈Ψ1〉{w.

     ewp (continue k w)〈Ψ1〉{Q1}

   }

   ewp (h v k)〈Ψ2〉{Q2}

 ⋀ 
We identify the permission
    to resume the continuation.

The continuation k can be resumed with
    a return value w, if w is allowed by Ψ1.

One is then allowed to assume that
    the expression continue k w
    performs effects according to Ψ1

    and may terminate according to Q1.

The shallow-handler judgment isShallowHandler comprises
    the specifications of the return branch and the effect branch:

Reasoning About Handlers



(Deep Handler)

ewp e〈Ψ1〉{Q1}

ewp (match e with effect v k -> h v k | v -> r v)〈Ψ2〉{Q2}

isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2}

The reasoning rule for deep handlers is similar to the rule for shallow handlers,
    the difference is hidden in the definition of the deep-handler judgment isDeepHandler.

Reasoning About Handlers



isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

(∀v k.

   ewp (perform v)〈Ψ1〉{w. ∀Ψ' Q'.

     ▷ isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ'〉{Q'}   

     ewp (continue k w)〈Ψ'〉{Q'}

   }   

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

The deep-handler judgment isDeepHandler is recursively defined,
    thus reflecting the recursive behavior of deep handlers.

Reasoning About Handlers



isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ2〉{Q2} ≜

(∀y. Q1(y)    ewp (r y)〈Ψ2〉{Q2}) 

(∀v k.

   ewp (perform v)〈Ψ1〉{w. ∀Ψ' Q'.

     ▷ isDeepHandler〈Ψ1〉{Q1} (h | r)〈Ψ'〉{Q'}   

     ewp (continue k w)〈Ψ'〉{Q'}

   }   

   ewp (h v k)〈Ψ2〉{Q2})

 ⋀ 

The deep-handler judgment isDeepHandler is recursively defined,
    thus reflecting the recursive behavior of deep handlers.

Reasoning About Handlers

To reason about the call to the continuation,
    one must reestablish the handler judgment,
    because the handler is reinstalled.

This new handler instance may abide
    by a different protocol Ψ' and
    by a different postcondition Q'.



Case Study: Verification of invert



 type iter = (int -> unit) -> unit

 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

 val invert : iter -> sequence

We wish to prove that invert meets the following specification:

∀iter xs.
    isIter(iter, xs)    ewp (invert iter)〈⊥〉{k. isSeq(k, xs)}

Specification of invert



 type iter = (int -> unit) -> unit

isIter(iter, xs) ≜

   ∀f I.

    □ (∀us u vs. us ++ u :: vs = xs

       I(us)    wp (f u) {_. I(us ++ [u])})

    I([])    wp (iter f) {_. I(xs)}

The abstract predicate I is the loop invariant:

    "If f can take one step, then iter can take xs steps."

Definition of isIter



 type iter = (int -> unit) -> unit

isIter(iter, xs) ≜

   ∀f I Ψ.

    □ (∀us u vs. us ++ u :: vs = xs

       I(us)    ewp (f u)〈Ψ〉{_. I(us ++ [u])})

    I([])    ewp (iter f)〈Ψ〉{_. I(xs)}

The abstract protocol Ψ  means that iter is effect-polymorphic:

    (1) iter does not perform effects, and

    (2) iter does not intercept the effects that f may throw.

The abstract predicate I is the loop invariant.

Definition of isIter



 type sequence = unit -> head
 and head = Nil | Cons of int * sequence

isSeq'(k, us, xs) ≜ ewp k()〈⊥〉{y. isHead(y, us, xs)}

isHead(y, us, xs) ≜ match y with

  | Nil         ⇒      us = xs

  | Cons (u, k) ⇒ ∃vs. us ++ u :: vs = xs  *  ▷ isSeq'(k, us ++ [u], xs)

  end

isSeq(k, xs) ≜ isSeq'(k, [], xs)

The protocol ⊥ indicates that a sequence does not perform effects.

Because the definition of isSeq' does not include a persistently modality,
    the sequence k is not duplicable; it can be used at most once.

Definition of isSeq



 type _ Effect.t += Yield : int -> unit t
 let yield x = perform (Yield x)

 let invert iter = fun () ->
   match iter yield with
   | effect (Yield x) k -> Seq.Cons (x, continue k)
   | ()                 -> Seq.Empty

We covered the definitions, now we study the key ideas of the proof:

1. The introduction of a piece of ghost state to keep track of the elements already seen.

2. The introduction of the protocol describing the effect Yield.

Key Ideas



 let yield x = perform (Yield x)

 let invert iter = fun () ->
   let ghost seen = ref [] in
   match iter yield with
   | effect (Yield x), k ->
       seen := !seen @ [x];
       Seq.Cons (x, continue k)
   | () ->
       Seq.Empty

The memory cell seen is part of the ghost state,
    which can be seen as a fictional extension of the heap.

Ghost state is a standard verification technique,
    usually presented as history variables.

Ghost State



seen ↦ []

seen ↦(½) []

Handlee

seen ↦(½) []

Handler

seen ↦(½) us      seen ↦(½) vs         seen ↦ (us ++ [u])  *  us = vs

The ownership of the ghost location seen is split
    between handlee and handler:

To update seen, full ownership is required, which can be recovered from the two halves:

⇒

Ghost State

 let yield x = perform (Yield x)

 let invert iter = fun () ->
   let ghost seen = ref [] in
   match iter yield with
   | effect (Yield x), k ->
       seen := !seen @ [x];
       Seq.Cons (x, continue k)
   | () ->
       Seq.Empty



seen ↦ []

seen ↦(½) []

Handlee

seen ↦(½) []

Handler

The ownership of the ghost location seen is split
    between handlee and handler:

"In the eyes of the handlee, the effect Yield u updates seen with u."

YIELD = !us u vs (Yield u) { seen ↦(½)  us         *
                             us ++ u :: vs = xs    }.
        ?_       (())      { seen ↦(½) (us ++ [u]) }

Ghost State

 let yield x = perform (Yield x)

 let invert iter = fun () ->
   let ghost seen = ref [] in
   match iter yield with
   | effect (Yield x), k ->
       seen := !seen @ [x];
       Seq.Cons (x, continue k)
   | () ->
       Seq.Empty



seen ↦(½) []
ewp (iter yield)〈YIELD〉{_.
  seen ↦(½) xs}

  seen ↦ []
  ewp (match iter yield with
       | effect (Yield x) k -> h x k
       |() -> r ()) 〈⊥〉{y. isHead(y,[],xs)}

seen ↦(½) []
isDeepHandler
 〈YIELD〉{_. seen ↦(½) xs}
    (h | r)
 〈⊥〉{y. isHead(y,[],xs)}

After the allocation of seen, there comes the main reasoning step:
    the application of Rule Deep Handler.

Verification of invert

(Deep Handler)



First proof obligation

The first proof obligation follows from the hypothesis isIter(iter, xs).

seen ↦(½) []     ewp (iter yield)〈YIELD〉{_. seen ↦(½) xs}

Indeed, it suffices

    (1) to instantiate the loop invariant  I(us)  with  seen ↦(½) us,

    (2) to instantiate the abstract protocol  Ψ  with  YIELD  , and

    (2) to prove that the function  yield  "advances the invariant by one step".

  seen ↦(½) us      ewp (yield u)〈YIELD〉{_. seen ↦(½) (us ++ [u])}

Verification of invert



Second proof obligation

isDeepHandler〈YIELD〉{_. seen ↦(½) xs}
                (h | r)
             〈⊥〉{y. isHead(y,[],xs)}
 

First, we generalize the assertion to reason about an arbitrary state of  seen:

The proof then follows by Löb induction (because a deep handler is recursively defined):

▷ H    H

seen ↦(½) []

isDeepHandler〈YIELD〉{_. seen ↦(½) xs}
                (h | r)
             〈⊥〉{y. isHead(y,us,xs)}

H ≜ ∀us. seen ↦(½) us

Verification of invert



Demo!


